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Abstract 
In general,  most  approaches to robust  autonomy  with 
respect to planning  and  execution  are  focused  on 
either providing  models that allow for  flexibility or 
providing  techniques  for  changing  models to improve 
performance. We  take  these  techniques  into 
consideration,  but  focus  the  majority  of  our  work  on 
robust  autonomous  planning  and  execution  with 
imperfect  models.  We  deal  with  this  through a number 
of means: 1)  providing fast replanning in the  event of 
unforeseen  events, 2) modeling  execution  context,  and 
3) adjusting  the  planning  and  scheduling  system 
heuristics  given a model  of the uncertainty  of  the 
environment. We have demonstrated these techniques 
using  the  Continuous  Activity  Scheduling,  Planning, 
Execution,  and  Replanning  (CASPER)  system. 

Introduction 
Robust autonomy within the context of planning and 
execution is  central to many NASA  and JPL missions.  Not 
only do communications constraints demand more 
autonomy but also budgetary constraints that demand more 
automation. In  this  context, systems must be  able  to 
autonomously plan, execute, and respond to the 
environment. Often, models are used for planning,  and 
feedback systems provide the execution, using  a number of 
layers to provide the required levels of abstraction and 
detail with respect to task dispatching and execution. A 
designer can provide robustness in  one of three ways: 

1) provide a flexible model  which entails all 

2) provide a system that modifies the model  in  the 

3) provide a system that attempts to be as robust  as 

possibilities of interest, 

face of unexpected events, and 

possible with  a  given  model. 

Model flexibility is probably the most common 
technique for providing robustness. Examples are the use 
of temporal constraint networks [9], resource profiling,  and 
contingency planning [IO]. The primary advantage of such 
systems is a-priori knowledge of its performance. But, 
some systems produce plans that  in the end are overly 
pessimistic. For example, a  task  might  take on average 10 

minutes to complete, but can vary from 5 to 15 minutes 
according to a  distribution. So, if  we planned a large 
number of such tasks, human experts might use the average 
case time to project  feasibility. Unfortunately, systems that 
provide model  flexibility often would  be forced to assume 
that each task  would require 15 minutes. Even those that 
provide a  margin of error  (say, 1 standard deviation is 
acceptable) would choose a fixed approximated time for 
the events regardless of the number of events. 

Changing models or developing new models 
automatically is quite an open area of research, and several 
systems provide some utility in this  area. Hidden Markov 
Models, Neural  Nets, and other adaptive systems fall into 
this category [l I]. In practice, it has proven to be  very 
difficult to learn  a  model  that  a symbolic system can then 
use for planning and scheduling, although this remains an 
active area of research. Still, no spacecraft has of yet flown 
with large-scale onboard adaptation of models and 
autonomy (although see [17, 181 for a description of  a 
flight experiment of significant model-based autonomy). 

Robust planning and execution compliments both 
flexible modeling systems and  model modification systems 
in that  the model  is  a given and the  system provides 
robustness through its execution and planning. Therefore, 
we focus our efforts on providing robustness with  a given 
model. We accomplish  this through a number of means: 

1) providing  fast replanning in  the event of 

2) modeling execution context,  and 
3) adjusting the planning and scheduling system 

heuristics  given  a model of the uncertainty of the 
environment. 

unforeseen events, 

Fast Re-planning 
To facilitate fast replanning, we utilize an iterative  repair 
algorithm [1,2]. We accept that  in some circumstances, 
iterative repair  does not  perform as well as constructive 
algorithms, however our experience has been  that  in 
practice  it  has  performed  well for a number of real domains 
[SI. Iterative  repair  is a natural choice  for a system that 
receives state updates because if an update causes a 
conflict iterative  repair  naturally accepts a current plan 
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with a flaw and repairs it. The  only  algorithmic  adaptation 
that is needed i t  to ensure that certain operations are not 
allowed in an execution  context  (e.g.,  changing activities in 
the past.) 

During iterative repair, the conflicts in the schedule 
are analyzed and addressed  one at a time until no conflicts 
exist, or a computation  resource bound  has  been exceeded. 
A conflict is a violation of a constraint. We consider the 
following  types of constraints: resources, states, temporal 
relationships, parameter  dependencies, and 
decompositions.  Conflicts  can be repaired by means of 
several predefined  methods. We consider the following 
repair methods:  moving  an activity, adding  a new instance 
of  an activity, deleting an activity, detailing an activity, 
abstracting an activity, making  a reservation of  an activity, 
canceling  a reservation, connecting  a  temporal constraint, 
disconnecting  a constraint, and changing  a  parameter 
value. The repair algorithm first selects a conflict to repair 
then selects a repair method. The type of conflict being 
resolved  determines which methods  can repair the conflict. 
Depending on the selected method, the algorithm may  need 
to  make addition decisions. For  example, when moving  an 
activity, the algorithm  must select a new start time for the 
activity. 

To achieve a higher level  of responsiveness in a 
dynamic planning situation, we utilize a continuous 
planning approach and  have implemented  a  system called 
CASPER (for Continuous  Activity  Scheduling  Planning 
Execution and Replanning) [3, 81. Rather than considering 
planning  a  batch  process in which a  planner is presented 
with goals and an initial state, the planner  has  a current 
goal set, a plan, a current state, and a model  of the 
expected future state. At any  time an incremental  update 
to  the goals, current state, or  planning  horizon (at much 
smaller  time  increments  than  batch  planning) may  update 
the current state of the plan  and  thereby  invoke the planner 
process. This  update may  be  an unexpected  event or simply 
time  progressing  forward.  The  planner is then responsible 
for maintaining  a consistent, satisficing plan with the most 
current information.  This current plan  and projection is the 
planner’s  estimation as to what it expects to  happen in the 
world if things go as expected.  However,  since things 
rarely go  exactly as expected, the planner  stands  ready to 
continually modify the plan. From the point of  view  of  the 
planner, in each  cycle the following occurs: 

changes to the  goals  and the initial state first posted to 
the plan, 
effects of these changes are propagated through the 
current plan  projections (includes conflict 
identification) 

0 iterative repair is invoked to remove conflicts and 
make the plan appropriate for the current state and 
goals. 

This  approach is shown in below in Figure I .  At each step, 
the  plan  is created by using iterative repair with: 

0 the  portion  of the old plan for the current planning 

0 the  updated goals and state; and 
the  new (extended)  planning horizon. 

horizon; 

Fig. 1 Continuous  Planning  Incremental  Extension 

~~ ~ ~~~~ 

Modeling  Execution  Context 
Modeling  execution  context  provides  a way  to give the 
planner information  about the execution. Ideally, this 
would  not disrupt the design of the planner to the point  that 
we need to research  an entirely different problem. We 
achieve this through these  means: 

1. Abstraction  Hierarchies 
2. Commitment Strategies 

Abstraction hierarchies provide  information about the 
criticality of detail required  given the current time with 
respect to  an executing  plan  (see  Figure 2). For  example, 
consider the minutiae  involved with executing the plan 
“get  in the car, drive to McDonalds, buy some fries.” 
When actually getting in the car, we take  input from our 
environment  before we actually decide  on what  way  we 
will actually expand this activity. We might enter on the 
passenger side if the driver’s side  is blocked  by our teenage 
daughter’s car. But, when making the plan,  we do allot a 
certain amount of time  and  other  scarce resources. 
Basically, as activities become more urgent, our view of 
them changes, and we need to plan more details. If  we plan 
all details in advance, we  may  waste considerable 
computational  resources  on  decisions that become 
invalidated during  execution. 

I I I 

- 
Fig. 2 Hierarchical  Planning  Horizons 



Of course, this requires a certain amount of modeling, 
and one  could  argue that  we are simply  including 
execution  context in the modeling problem  and are 
therefore more similar to flexible modeling  systems than 
we claim. This is true, if you consider modeling execution 
as an end.  But, we  model abstraction hierarchies to 
improve the responsiveness of the planner by simplifying 
the problems that we ask it to solve, not improve the actual 
veracity  of a model. 

Commitment strategies are another way to make  the 
execution of a plan more robust. In  many planning 
systems,  some  execution  robustness is achieved using 
least-commitment  techniques  throughout  planning to retain 
plan flexibility. In practice, however, many problems are 
over-constrained and the planner must interface to other 
software  components that cannot  handle flexible values. 
This  can significantly reduce the flexibility of the resulting 
plans. Instead, we commit to decisions  during  planning (for 
the given abstraction hierarchies) but only  commit to an 
upcoming  piece of the plan for execution. Basically, 
commitment strategies are  decisions  about when to freeze 
decisions  about  an activity. For  example, we could never 
change  any  information  about an activity in the  past 
(except by receiving  information  from the environment), so 
past activities must  be frozen or committed. By committed, 
we mean  that the planner is not  allowed to change any 
information  about the activity, and it is ready to dispatch to 
the execution  system.  But, how early must we commit 
activities? Should we  wait  until the last second,  choose  a 
different strategy for each  type of activity, or choose  a 
different strategy for each activity instance? 

We choose to model the commitment strategy for each 
activity type. This affords us a significant amount of 
flexibility in designing  an  appropriate  commitment strategy 
for different execution contexts. 

Adjusting  the  Planner 
Another way  we provide  robustness with imperfect models 
is by  automatically  adjusting the planner’s  search 
heuristics to the domain in question. This is facilitated 
using a  technique called Adaptive  Problem  Solving ( A P S )  
[6]. The basic idea is that  by inferring a probabilistic model 
of the domain, we can  automatically adjust the planner to 
provide  robust  replanning for the simulation. 

The advantages of this are clear-given a model, we 
can adjust a planner’s  parameters to perform well on a 
problem regardless of flaws in the planner, the planner’s 
heuristics, or the planner’s  parameters.  This  means that 
certain types  of  programming errors, logical flaws, and 
lack  of domain  expert  advice  can be automatically 
corrected. 

Adaptive  problem solvir;g uses stochastic optimization 
[ 161 to  find  the  best parameters for a planner applied to a 
specific domain.  The  algorithm takes the set of parameters 

to optimize, called strategies, and selects the strategy that 
has  the highest expected utility using a decision criterion. 
Using the selected strategy, the algorithm makes  local 
steps using a  chosen neighborhood algorithm  (e.g.. local 
mutations or genetics-inspired search) to generate the 
subsequent set of strategies. The  algorithm stops when i t  
reaches a maximum  time or number of iterations, or 
quiescence. 

Expected utility is the criteria by which  the strategies 
are ranked.  Expected utility is the average utility  of the 
final plan, repaired using the chosen strategy, over a 
number  of stochastic simulations of the domain with 
stochastic starting points (or alternatively execution traces 
in the environment).  Higher  expected utilities, where 
utility is defined by the domain preferences, can be  built so 
as  to  be a criterion for robustness. 

The  decision criterion used in adaptive  problem 
solving  enables strategy selection at a  low  sampling cost. 
Statistical decision criteria, such as the Nadas criterion 
[ 151, Bernstein’s inequality[ 141, Hoeffding’s 
inequality[ 131,  and Chernoff  Bounds [ 121, generate 
estimates of their expected utility based on sampling the 
strategies in the stochastic domain.  The criteria are used to 
determine when  the  number of samples is enough to 
guarantee the selection accuracy  within  a certain error. 
Error allocation techniques are used to enable selection 
with a  minimal number of samples. 

APS can be applied to  any parameter of the planner, 
including (but not  limited to) the commitment strategy, the 
set of heuristics used  by the planner, weightings  of  these 
heuristics, or the amount of time  dedicated to replanning. 

It should  be noted  that this could also be applied on- 
line, but in practice the number of epochs to produce  a 
significantly better planner may be very high. Even in 
ground-based simulations, APS would enable a planner to 
improve  robustness by learning its parameters based on 
feedback  from the environment. 

Discussion and Future  Work 
Robustness  can be  thought  of as an  aspect  of  plan quality. 
We may have  a  preference for more  robust plans, but this 
must be weighed other preferences. Often there is a 
preference for packing the plan with as many  goals as 
possible, which  can often decrease robustness. We plan  to 
provide  a representation for robustness  preferences and  use 
optimization  techniques  from [4] to  help  maintain  robust 
plans. 

However,  preferences of this type  can be particularly 
difficult to express. In addition, they often directly compete 
with many  of the science objectives. For  example,  one 
dominant objective is to simply  achieve as  many  goals as 
possible. This requires packing activities into the time 
frame of  the plan. Tight  temporal  and  resource  packing  can 
leave  very little room  for execution error, resulting in a 
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Fig. 3 Robustness as  a function of response  time 
characteristics 

brittle plan. We  would like the  user to be  able to express 
preferences for keeping the plan  robust and making an 
informed trade-off with other preferences. 

Plan  robustness  can vary over the temporal  boundaries 
of the plan. Robustness at time t is a  function of  the 
maximum  allowable  response  time at time t and the 
distribution of potential responses that may  be required at 
time t .  In other  words,  a  plan ,S robust if responses  are fast 
relative to the time limits for making the responses. We 
can  determine  approximate actual and  maximum  response 
times  using static analysis and simulations. The  necessary 
response at a  given  time  depends on the constraints and 
dependencies  associated with the activities in the plan at 
that time. Static analysis will reveal the constraint 
networks and response  time will  be approximately 
correlated to the complexity  of  these  networks.  Running 
simulations  of plan executions in dynamic  environments 
will also give us estimates of response  time distributions. 

Once we have  response  time (i.e., re-planning time) 
information, we can  evaluate  and  improve  a  robustness 
preference. Robustness  can be viewed as a  function of the 
probability of failure, where failure occurs when response 
time  is greater than the maximum  allowable.  This is the 
area  under the response  time distribution curve  and greater 
than the maximum  response  time (see Figure 3). 
Robustness will increase if we: 1)  decrease the response 
time mean or standard deviation, or 2) increase the 
maximum allowable  response time. Thus, either can be 
done to increase quality. Understanding  and  decreasing the 
response  time mean  and standard  deviation is a difficult 
problem.  This  can be thought of as analyzing the edit 
distance  between  a  plan and its neighboring valid plans [5]. 
Robust  plans will  have smaller edit distances, and  the 
challenge is keeping the average  distance small. The 
alternative, increasing  maximum  response time, is only  a 
slightly less difficult problem.  Here, we can  analyze and 
relax the dependencies  between activities in the plan. 

Conclusion 
We have classified the three approaches to robustness with 
respect  to  models in a  planning and execution context. We 
argue that robust  execution and planning  can  occur in the 
face of imperfect  models, and have  described three 
techniques for achieving this robustness. They are: 1) 
providing fast replanning in the event of unforeseen events, 
2) modeling execution context, and  3) adjusting the 
planning and scheduling  system heuristics given  a model 
of the uncertainty of the environment. 
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